String Similarity Joins: An Experimental Evaluation

نویسندگان

  • Yu Jiang
  • Guoliang Li
  • Jianhua Feng
  • Wen-Syan Li
چکیده

String similarity join is an important operation in data integration and cleansing that finds similar string pairs from two collections of strings. More than ten algorithms have been proposed to address this problem in the recent two decades. However, existing algorithms have not been thoroughly compared under the same experimental framework. For example, some algorithms are tested only on specific datasets. This makes it rather difficult for practitioners to decide which algorithms should be used for various scenarios. To address this problem, in this paper we provide a comprehensive survey on a wide spectrum of existing string similarity join algorithms, classify them into different categories based on their main techniques, and compare them through extensive experiments on a variety of real-world datasets with different characteristics. We also report comprehensive findings obtained from the experiments and provide new insights about the strengths and weaknesses of existing similarity join algorithms which can guide practitioners to select appropriate algorithms for various scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trie-Join: Efficient Trie-based String Similarity Joins with Edit-Distance Constraints

A string similarity join finds similar pairs between two collections of strings. It is an essential operation in many applications, such as data integration and cleaning, and has attracted significant attention recently. In this paper, we study string similarity joins with edit-distance constraints. Existing methods usually employ a filter-and-refine framework and have the following disadvantag...

متن کامل

Similarity Joins of Text with Incomplete Information Formats

Similarity join over text is important in text retrieval and query. Due to the incomplete formats of information representation, such as abbreviation and short word, similarity joins should address an asymmetric feature that these incomplete formats may contain only partial information of their original representation. Current approaches, including cosine similarity with q-grams, can hardly dea...

متن کامل

PASS-JOIN: A Partition-based Method for Similarity Joins

As an essential operation in data cleaning, the similarity join has attracted considerable attention from the database community. In this paper, we study string similarity joins with edit-distance constraints, which find similar string pairs from two large sets of strings whose edit distance is within a given threshold. Existing algorithms are efficient either for short strings or for long stri...

متن کامل

Approximate String Joins

String data is ubiquitous and is commonly used to correlate (or join) entities across autonomous, heterogeneous databases. The main challenge is to effectively deal with the noisy nature of string data, due to, for example, transcription errors, incomplete information, and multiple conventions for recording string valued attributes. Commercial databases do not support approximate string joins d...

متن کامل

Accuracy of Approximate String Joins Using Grams

Approximate join is an important part of many data cleaning and integration methodologies. Various similarity measures have been proposed for accurate and efficient matching of string attributes. The accuracy of the similarity measures highly depends on the characteristics of the data such as amount and type of the errors and length of the strings. Recently, there has been an increasing interes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PVLDB

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014